viernes, 26 de febrero de 2010

COMUNICACION FULL DUPLEX Y SEMIDUPLEX

Dúplex es utilizado en las telecomunicaciones para definir a un sistema que es capaz de mantener una comunicación bidireccional, enviando y recibiendo mensajes de forma simultánea. La capacidad de transmitir en modo dúplex está condicionado por varios niveles:

* Medio físico (capaz de transmitir en ambos sentidos)
* Sistema de transmisión (capaz de enviar y recibir a la vez)
* Protocolo o norma de comunicación empleado por los equipos terminales.

Full dúplex (dúplex)

Atendiendo a la capacidad de transmitir entera o parcialmente en modo dúplex, podemos distinguir tres categorías de comunicaciones o sistemas: dúplex (full dúplex), semidúplex (half dúplex) y símplex.

La mayoría de los sistemas y redes de comunicaciones modernos funcionan en modo dúplex permitiendo canales de envío y recepción simultáneos. Podemos conseguir esa simultaneidad de varias formas:

* Empleo de frecuencias separadas (multiplexación en frecuencia)
* Cables separados

Nota: No existen colisiones en Ethernet en el modo full-duplex.



Un simple ilustración de un sistema de comunicación full-duplex.

Half dúplex (semidúplex)

En ocasiones encontramos sistemas que pueden transmitir en los dos sentidos, pero no de forma simultánea. Puede darse el caso de una comunicación por equipos de radio, si los equipos no son full dúplex, uno no podría transmitir (hablar) si la otra persona está también transmitiendo (hablando) porque su equipo estaría recibiendo (escuchando) en ese momento. En radiodifusión, se da por hecho que todo duplex ha de poder ser bidireccional y simultáneo, pues de esta manera, se puede realizar un programa de radio desde dos estudios de lugares diferente.



Una simple ilustración de un sistema de comunicación half-duplex.

Símplex

Sólo permiten la transmisión en un sentido. Un ejemplo típico es el caso de la fibra óptica; en estos casos se puede recurrir a sistemas en anillo o con doble fibra para conseguir una comunicación completa. Aunque en la actualidad ya existe la posibilidad de enviar y recibir señal a través de una sola fibra óptica pero en diferentes longitudes de onda.Una conexión semidúplex (a veces denominada una conexión alternativa o semi-dúplex) es una conexión en la que los datos fluyen en una u otra dirección, pero no las dos al mismo tiempo. Con este tipo de conexión, cada extremo de la conexión transmite uno después del otro. Este tipo de conexión hace posible tener una comunicación bidireccional utilizando toda la capacidad de la línea.

lunes, 22 de febrero de 2010

Sun System

Sun Microsystems es una empresa informática recientemente comprada por Oracle Corporation antes era parte de Silicon Valley, fabricante de semiconductores y software.
Fue constituida en 1982 por el alemán Andreas von Bechtolsheim y los norteamericanos Vinod Khosla, Bill Joy, Scott McNealy y Marcel Newman.


Las siglas SUN se derivan de «Stanford University Network», proyecto que se había creado para interconectar en red las bibliotecas de la Universidad de Stanford.


En ese año introducen al mercado su primera estación de trabajo que desde su inicio trabajó con el protocolo TCP/IP, protocolo sobre el cual se rige la mayor parte del tráfico de Internet.


Actualmente, la empresa cuenta con alrededor de 31.000 empleados a nivel mundial (datos de finales del año fiscal 2005).


Se hizo famosa por el eslogan «The network is the computer» («La red es la computadora»).


Su valor actual en la bolsa de tecnología Nasdaq está ligeramente sobre los 3 mil millones de dólares americanos (Diciembre 2008), y sus ventas anuales ascienden a 11 mil millones de dólares.

Algunos de sus productos han sido servidores y estaciones de trabajo para procesadores SPARC, los sistemas operativos SunOS y Solaris, el NFS, la plataforma de programación Java y conjuntamente con AT&T, la estandarización del UNIX System V Release 4.


Además de otros proyectos quizás menos rentables, como un nuevo entorno gráfico, NeWS o la interfaz gráfica de usuario OpenLook.Sun Microsystems es una empresa informática recientemente comprada por Oracle Corporation antes era parte de Silicon Valley, fabricante de semiconductores y software.Fue constituida en 1982 por el alemán Andreas von Bechtolsheim y los norteamericanos Vinod Khosla, Bill Joy, Scott McNealy y Marcel Newman.


Las siglas SUN se derivan de «Stanford University Network», proyecto que se había creado para interconectar en red las bibliotecas de la Universidad de Stanford.


En ese año introducen al mercado su primera estación de trabajo que desde su inicio trabajó con el protocolo TCP/IP, protocolo sobre el cual se rige la mayor parte del tráfico de Internet.


Actualmente, la empresa cuenta con alrededor de 31.000 empleados a nivel mundial (datos de finales del año fiscal 2005).


Se hizo famosa por el eslogan «The network is the computer» («La red es la computadora»).


Su valor actual en la bolsa de tecnología Nasdaq está ligeramente sobre los 3 mil millones de dólares americanos (Diciembre 2008), y sus ventas anuales ascienden a 11 mil millones de dólares.


Algunos de sus productos han sido servidores y estaciones de trabajo para procesadores SPARC, los sistemas operativos SunOS y Solaris, el NFS, la plataforma de programación Java y conjuntamente con AT&T, la estandarización del UNIX System V Release 4.


Además de otros proyectos quizás menos rentables, como un nuevo entorno gráfico, NeWS o la interfaz gráfica de usuario OpenLook.Sun Microsystems es una empresa informática recientemente comprada por Oracle Corporation antes era parte de Silicon Valley, fabricante de semiconductores y software.


Fue constituida en 1982 por el alemán Andreas von Bechtolsheim y los norteamericanos Vinod Khosla, Bill Joy, Scott McNealy y Marcel Newman.


Las siglas SUN se derivan de «Stanford University Network», proyecto que se había creado para interconectar en red las bibliotecas de la Universidad de Stanford.


En ese año introducen al mercado su primera estación de trabajo que desde su inicio trabajó con el protocolo TCP/IP, protocolo sobre el cual se rige la mayor parte del tráfico de Internet.Actualmente, la empresa cuenta con alrededor de 31.000 empleados a nivel mundial (datos de finales del año fiscal 2005).


Se hizo famosa por el eslogan «The network is the computer» («La red es la computadora»).


Su valor actual en la bolsa de tecnología Nasdaq está ligeramente sobre los 3 mil millones de dólares americanos (Diciembre 2008), y sus ventas anuales ascienden a 11 mil millones de dólares.


Algunos de sus productos han sido servidores y estaciones de trabajo para procesadores SPARC, los sistemas operativos SunOS y Solaris, el NFS, la plataforma de programación Java y conjuntamente con AT&T, la estandarización del UNIX System V Release 4.


Además de otros proyectos quizás menos rentables, como un nuevo entorno gráfico, NeWS o la interfaz gráfica de usuario OpenLook.Sun Microsystems es una empresa informática recientemente comprada por Oracle Corporation antes era parte de Silicon Valley, fabricante de semiconductores y software.


Fue constituida en 1982 por el alemán Andreas von Bechtolsheim y los norteamericanos Vinod Khosla, Bill Joy, Scott McNealy y Marcel Newman.


Las siglas SUN se derivan de «Stanford University Network», proyecto que se había creado para interconectar en red las bibliotecas de la Universidad de Stanford.


En ese año introducen al mercado su primera estación de trabajo que desde su inicio trabajó con el protocolo TCP/IP, protocolo sobre el cual se rige la mayor parte del tráfico de Internet.


Actualmente, la empresa cuenta con alrededor de 31.000 empleados a nivel mundial (datos de finales del año fiscal 2005).


Se hizo famosa por el eslogan «The network is the computer» («La red es la computadora»).


Su valor actual en la bolsa de tecnología Nasdaq está ligeramente sobre los 3 mil millones de dólares americanos (Diciembre 2008), y sus ventas anuales ascienden a 11 mil millones de dólares.


Algunos de sus productos han sido servidores y estaciones de trabajo para procesadores SPARC, los sistemas operativos SunOS y Solaris, el NFS, la plataforma de programación Java y conjuntamente con AT&T, la estandarización del UNIX System V Release 4.


Además de otros proyectos quizás menos rentables, como un nuevo entorno gráfico, NeWS o la interfaz gráfica de usuario OpenLook.

3COM3Com

Com NASDAQ: COMS es uno de los líderes en fabricación de equipos para infraestructura de Redes Informáticas.

La compañía fue fundada por Robert Metcalfe y otros socios en 1979 y su sede social está en Marlborough, Massachusetts.

El nombre 3Com hace referencia a que los intereses de la compañía son Computadoras, Comunicaciones y Compatibilidad.Robert Metcalfe inventó Ethernet en el Xerox PARC, y posteriormente, co-fundó 3Com en 1979. 3

Com comenzó a fabricar adaptadores de red Ethernet para muchos de los sistemas informáticos existentes a principios de los 80, incluyendo el LSI-11, IBM PC, y VAX-11.

A mediados de los años 1980, 3Com lanza EtherSeries como marca de su tecnología Ethernet, al tiempo que introduce una serie de programas y equipos basados en computadoras personales para proporcionar servicios compartidos sobre una LAN utilizando los protocolos XNS.

Estos protocolos se denominan comercialmente EtherShare (para compartir ficheros), EtherPrint (para imprimir), EtherMail (para email), y Ether-3270 (para emulación de host IBM).

D-LINK


D-Link Corporation es una empresa electrónica que fabrica componentes de red, como tarjetas de red, puntos de acceso, routers, pasarelas, firewalls, etc.

La empresa fue fundada en 1986 por Ken Kao y las oficinas centrales de la empresa se encuentran localizadas en Taipéi, Taiwan.

En el 2007, fue la empresa líder del sector de redes informáticas dentro del segmento de pequeñas y medianas empresas (pymes) del mundo, con una cuota de mercado[2] del 21,9 %, y en marzo del 2008 se convirtió en líder del mercado mundial en el envío de productos Wi-Fi, con el 33 % del mercado mundial.[3]

En el 2007 la compañía figuró en la «Info Tech 100», lista de las mejores empresas de TI del mundo.

También ha sido clasificada en el puesto número 9 de las mejores empresas de TI del mundo en términos de rentabilidad para los accionistas por parte de la revista BusinessWeek.[4]

La empresa dispone de 127 oficinas de venta en 64 países y 10 centros de distribución global que sirven a 100 países del mundo. D-Link opera a modo de canal indirecto: venta a través de distribuidores, vendedores, detallistas, revendedores de valor añadido y proveedores de servicios de telecomunicaciones.

jueves, 18 de febrero de 2010

COMPONENTES DE DATOS

Base de datos:

Un sistema de base de datos esta compuesto por:

Datos del usuario. En la actualidad, casi todas las bases de datos representan los datos del usuario como afinidades que son tablas de datos. No todas las afinidades son igualmente deseables; algunas están mejor estructuradas que otras. Para crear afinidades bien estructuradas se realiza un proceso llamado normalización.

Metadatos.
Debido a que los productos DBMS están diseñados para almacenar y manipular tablas, la mayor parte de ellos almacenan los metadatos en forma de tablas, algunas veces llamadas tablas del sistema.
Índices. Están encaminados a mejorar el funcionamiento y la accesibilidad de la base de datos. Se usan para ordenar y para obtener un acceso rápido a los datos. Los índices son muy valiosos pero implican un costo. Cada vez que se actualiza una fila en una afinidad o tabla, también deben actualizarse los índices. Esto no es malo; sólo significa que los índices no son gratuitos y que deben reservarse para casos en los que sean de verdad necesarios.

Metadatos de aplicación.
Se usan para almacenar la estructura y el formato de formas, reportes, consultas de usuarios, y otros componentes de aplicación. Normalmente no se accede de forma directa a los metadatos de aplicación sino que se hace a través de herramientas proporcionadas por el DBMS para tal fin.

Sistema administrador de base de datos:

Herramientas de diseño.
El subsistema de herramientas de diseño tiene una serie de elementos que facilitan el diseño y la creación de la base de datos y sus aplicaciones. Por lo general, incluye recursos para crear tablas, formas, consultas y reportes. Los productos DBMS también proporcionan lenguajes de programación e interfaces para estos.

Utilerías de tiempo de ejecución.
El subsistema de tiempo de ejecución procesa los componentes de aplicación que se desarrollan usando las herramientas de diseño. Otras utilerías de tiempo de ejecución responden a consultas e imprimen reportes. Adicionalmente hay un componente de tiempo de ejecución que procesa las solicitudes del programa de aplicación para leer y escribir datos de la base de datos.

Motor del sistema administrador de base de datos.
Es el intermediario entre las herramientas de diseño y las utilerías del subsistema de tiempo de ejecución, y los datos mismos.
Aplicaciones de bases de datos:
Formas. Se emplean para introducir información a la base de datos. En algunas ocasiones los identificadores (ID) de los objetos no son desplegados en la aplicación. La razón es que en el modelo del usuario no existen y por lo tanto carecen de significado para él. Se utilizan para que el DBMS identifique cada fila de cada tabla y se denominan claves sustitutas.

Consultas.
Se usan cuando los usuarios desean consultar los datos para contestar preguntas o para identificar problemas o situaciones particulares. Para expresar las consultas se puede usar el lenguaje SQL de acceso a los datos, otra posibilidad es usar la consulta por ejemplo (QBE). En la mayoría de los DBMS las consultas se pueden guardar como parte de la aplicación, de modo que sea posible volverlas a ejecutar. Además en las consultas se pueden especificar parámetros, lo que significa que se estructuran de forma tal que acepten valores de criterios durante su funcionamiento.

Reportes.
Un reporte es una presentación que tiene un formato de la información de una base de datos. Suelen estar divididos por secciones como Encabezado, títulos, grupos, detalles, subtotales, totales y pié de página. La presentación de la información casi siempre tiene uno o más ordenamientos.

Menús.
Se usan para organizar los distintos componentes de la aplicación con el propósito de que el usuario final acceda a ellos con facilidad, mostrándole las opciones disponibles y ayudándole a seleccionar las acciones que desea realizar.

Programas de aplicación.
Los programas de aplicación vienen a ser como el pegamento que nos permite unir el resto de los componentes de manera coherente y permite realizar procesos y cálculos a la aplicación. Adicionalmente suele haber algunas limitaciones que los DBMS no pueden enforzar directamente en la estructura de los datos y que deben ser codificadas en el programa de aplicación.



INTRODUCCIÓN

El desarrollo de la computación y su integración con las telecomunicaciones en la telemática han propiciado el surgimiento de nuevas formas de comunicación, que son aceptadas cada vez por más personas. El desarrollo de las redes informáticas posibilito su conexión mutua y, finalmente, la existencia de Internet, una red de redes gracias a la cual una computadora puede intercambiar fácilmente información con otras situadas en regiones lejanas del planeta.
La información a la que se accede a través de Internet combina el texto con la imagen y el sonido, es decir, se trata de una información multimedia, una forma de comunicación que esta conociendo un enorme desarrollo gracias a la generalización de computadores personales dotadas del hardware y software necesarios. El último desarrollo en nuevas formas de comunicación es la realidad virtual, que permite al usuario acceder a una simulación de la realidad en tres dimensiones, en la cual es posible realizar acciones y obtener inmediatamente una respuesta, o sea, interactuar con ella.
El uso creciente de la tecnología de la información en la actividad económica ha dado lugar a un incremento sustancial en el número de puestos de trabajo informatizados, con una relación de terminales por empleado que aumenta constantemente en todos los sectores industriales.
La movilidad lleva a unos porcentajes de cambio anual entre un 20 y un 50% del total de puestos de trabajo. Los costos de traslado pueden ser notables (nuevo tendido para equipos informáticos, teléfonos, etc.). Por tanto, se hace necesaria una racionalización de los medios de acceso de estos equipos con el objeto de minimizar dichos costos.
Las Redes de Área Local han sido creadas para responder a ésta problemática. El crecimiento de las redes locales a mediados de los años ochenta hizo que cambiase nuestra forma de comunicarnos con los ordenadores y la forma en que los ordenadores se comunicaban entre sí.
La importancia de las LAN reside en que en un principio se puede conectar un número pequeño de ordenadores que puede ser ampliado a medida que crecen las necesidades. Son de vital importancia para empresas pequeñas puesto que suponen la solución a un entorno distribuido.

DESARROLLO

Una de las características mas notables en le evolución de la tecnología de las computadoras es la tendencia a la modularidad. Los elementos básicos de una computadora se conciben, cada vez mas, como unidades dotadas de autonomía, con posibilidad de comunicación con otras computadoras o con bancos de datos.
La comunicación entre dos computadoras puede efectuarse mediante los tres tipos de conexión:
Los datos pueden viajar a través de una interfaz serie o paralelo, formada simplemente por una conexión física adecuada, como por ejemplo un cable.
Conexión directa: A este tipo de conexión se le llama transferencia de datos on – line. Las informaciones digitales codificadas fluyen directamente desde una computadora hacia otra, sin ser transferidas a ningún soporte intermedio.
Conexión a media distancia: Es conocida como conexión off-line. La información digital codificada se graba en un soporte magnético o en una ficha perforada y se envía al centro de proceso de datos, donde será tratada por una unidad central u host.
Conexión a gran distancia: Con redes de transferencia de datos, de interfaces serie y módems se consiguen transferencia de información a grandes distancias.
La tecnología electrónica, con sus microprocesadores, memorias de capacidad cada vez más elevada y circuitos integrados, hace que los cambios en el sector de las comunicaciones puedan asociarse a los de las computadoras, porque forma parte de ambos. Hace ya algún tiempo que se están empleando redes telefónicas para las comunicaciones de textos, imágenes y sonidos. Por otro lado existen redes telefónicas, públicas y privadas, dedicadas solamente a la transmisión de datos.
Mediante el teléfono de nuestra casa se puede establecer comunicación con cualquier lugar del mundo, marcando las claves correctas. Si se dispone de la ayuda de una computadora, conectada a la línea telefónica mediante un modulador / desmodulador (MODEM), se puede comunicar con otras computadoras que dispongan de los mismos elementos.
Cada día existe más demanda de servicios de telecomunicación entre computadoras, y entre éstas y terminales conectados en lugares alejados de ellas, lo cual abre más el abanico de posibilidades de la conjunción entre las comunicaciones y la computación o informática, conjunción a la que se da el nombre de telemática.

MEDIOS DE COMUNICACIÓN.

El cable par trenzado
Es de los más antiguos en el mercado y en algunos tipos de aplicaciones es el más común. Consiste en dos alambres de cobre o a veces de aluminio, aislados con un grosor de 1 mm aproximadamente. Los alambres se trenzan con el propósito de reducir la interferencia eléctrica de pares similares cercanos. Los pares trenzados se agrupan bajo una cubierta común de PVC (Policloruro de Vinilo) en cables multipares de pares trenzados (de 2, 4, 8, hasta 300 pares).
Un ejemplo de par trenzado es el sistema de telefonía, ya que la mayoría de aparatos se conectan a la central telefónica por medio de un par trenzado. Actualmente, se han convertido en un estándar en el ámbito de las redes LAN (Local Area Network) como medio de transmisión en las redes de acceso a usuarios (típicamente cables de 2 ó 4 pares trenzados). A pesar que las propiedades de transmisión de cables de par trenzado son inferiores, y en especial la sensibilidad ante perturbaciones extremas, a las del cable coaxial, su gran adopción se debe al costo, su flexibilidad y facilidad de instalación, así como las mejoras tecnológicas constantes introducidas en enlaces de mayor velocidad, longitud, etc.

Estructura del cable par trenzado:
Por lo general, la estructura de todos los cables par trenzado no difieren significativamente, aunque es cierto que cada fabricante introduce algunas tecnologías adicionales mientras los estándares de fabricación se lo permitan. El cable está compuesto, por un conductor interno que es de alambre electrolítico recocido, de tipo circular, aislado por una capa de polietileno coloreado.

Debajo de la aislación coloreada existe otra capa de aislación también de polietileno, que contiene en su composición una sustancia antioxidante para evitar la corrosión del cable. El conducto sólo tiene un diámetro de aproximadamente medio milímetro, y más la aislación el diámetro puede superar el milímetro.
Sin embargo es importante aclarar que habitualmente este tipo de cable no se maneja por unidades, sino por pares y grupos de pares, paquete conocido como cable multipar. Todos los cables del multipar están trenzados entre sí con el objeto de mejorar la resistencia de todo el grupo hacia diferentes tipos de interferencia electromagnética externa. Por esta razón surge la necesidad de poder definir colores para los mismos que permitan al final de cada grupo de cables conocer qué cable va con cual otro. Los colores del aislante están normalizados a fin de su manipulación por grandes cantidades. Para Redes Locales los colores estandarizados son:

Naranja / Blanco – Naranja.
Verde / Blanco – Verde.
Blanco / Azul – Azul
Blanco / Marrón – Marrón

En telefonía, es común encontrar dentro de las conexiones grandes cables telefónicos compuestos por cantidades de pares trenzados, aunque perfectamente identificables unos de otros a partir de la normalización de los mismos. Los cables una vez fabricados unitariamente y aislados, se trenzan de a pares de acuerdo al color de cada uno de ellos; aún así, estos se vuelven a unir a otros formando estructuras mayores: los pares se agrupan en subgrupos, los subgrupos de agrupan en grupos, los grupos se agrupan en superunidades, y las superunidades se agrupan en el denominado cable.
De esta forma se van uniendo los cables hasta llegar a capacidades de 2200 pares; un cable normalmente está compuesto por 22 superunidades; cada sub-unidad está compuesta por 12 pares aproximadamente; este valor es el mismo para las unidades menores. Los cables telefónicos pueden ser armados de 6, 10, 18, 20, 30, 50, 80, 100, 150, 200, 300, 400, 600, 900, 1200, 1500, 1800 ó 2200 pares.

Tipos de cable par trenzado:

Cable de par trenzado apantallado (STP):
En este tipo de cable, cada par va recubierto por una malla conductora que actúa de apantalla frente a interferencias y ruido eléctrico. Su impedancia es de 150 Ohm.

El nivel de protección del STP ante perturbaciones externas es mayor al ofrecido por UTP. Sin embargo es más costoso y requiere más instalación. La pantalla del STP, para que sea más eficaz, requiere una configuración de interconexión con tierra (dotada de continuidad hasta el terminal), con el STP se suele utilizar conectores RJ49.
Es utilizado generalmente en las instalaciones de procesos de datos por su capacidad y sus buenas características contra las radiaciones electromagnéticas, pero el inconveniente es que es un cable robusto, caro y difícil de instalar.

Cable de par trenzado con pantalla global (
FTP):

En este tipo de cable como en el UTP, sus pares no están apantallados, pero sí dispone de una pantalla global para mejorar su nivel de protección ante interferencias externas. Su impedancia característica típica es de 120 OHMIOS y sus propiedades de transmisión son más parecidas a las del UTP. Además, puede utilizar los mismos conectores RJ45. Tiene un precio intermedio entre el UTP y STP.

Cable par trenzado no apantallado (UTP):


El cable par trenzado más simple y empleado, sin ningún tipo de pantalla adicional y con una impedancia característica de 100 Ohmios. El conector más frecuente con el UTP es el RJ45, aunque también puede usarse otro (RJ11, DB25, DB11, etc), dependiendo del adaptador de red.
Es sin duda el que hasta ahora ha sido mejor aceptado, por su costo accesibilidad y fácil instalación. Sus dos alambres de cobre torcidos aislados con plástico PVC han demostrado un buen desempeño en las aplicaciones de hoy. Sin embargo, a altas velocidades puede resultar vulnerable a las interferencias electromagnéticas del medio ambiente.
El cable UTP es el más utilizado en telefonía.

Categorías del cable UTP:

Cada categoría especifica unas características eléctricas para el cable: atenuación, capacidad de la línea e impedancia. Existen actualmente 8 categorías dentro del cable UTP:


Categoría 1: Este tipo de cable esta especialmente diseñado para redes telefónicas, es el típico cable empleado para teléfonos por las compañías telefónicas. Alcanzan como máximo velocidades de hasta 4 Mbps.
Categoría 2: De características idénticas al cable de categoría 1.
Categoría 3: Es utilizado en redes de ordenadores de hasta 16 Mbps. de velocidad y con un ancho de banda de hasta 16 Mhz.
Categoría 4: Esta definido para redes de ordenadores tipo anillo como Token Ring con un ancho de banda de hasta 20 Mhz y con una velocidad de 20 Mbps.
Categoría 5: Es un estándar dentro de las comunicaciones en redes LAN. Es capaz de soportar comunicaciones de hasta 100 Mbps. con un ancho de banda de hasta 100 Mhz. Este tipo de cable es de 8 hilos, es decir cuatro pares trenzados. La atenuación del cable de esta categoría viene dado por esta tabla referida a una distancia estándar de 100 metros:


Categoría 5e: Es una categoría 5 mejorada. Minimiza la atenuación y las interferencias. Esta categoría no tiene estandarizadas las normas aunque si esta diferenciada por los diferentes organismos.
Categoría 6: No esta estandarizada aunque ya se está utilizando. Se definirán sus características para un ancho de banda de 250 Mhz.
Categoría 7: No esta definida y mucho menos estandarizada. Se definirá para un ancho de banda de 600 Mhz. El gran inconveniente de esta categoría es el tipo de conector seleccionado que es un RJ-45 de 1 pines.
En esta tabla podemos ver para las diferentes categorías, teniendo en cuenta su ancho de banda, cual sería las distancias máximas recomendadas sin sufrir atenuaciones que hagan variar la señal:


El cable coaxial.

El cable coaxial tenía una gran utilidad en sus inicios por su propiedad idónea de transmisión de voz, audio y video, además de textos e imágenes.
Se usa normalmente en la conexión de redes con topología de Bus como Ethernet y ArcNet, se llama así porque su construcción es de forma coaxial. La construcción del cable debe de ser firme y uniforme, por que si no es así, no se tiene un funcionamiento adecuado.
Este conexionado está estructurado por los siguientes componentes de adentro hacia fuera de la siguiente manera:
Un núcleo de cobre sólido, o de acero con capa de cobre, o bien de una serie de fibras de alambre de cobre entrelazadas dependiendo del fabricante.
Una capa de aislante que recubre el núcleo o conductor, generalmente de material de polivinilo, este aislante tiene la función de guardar una distancia uniforme del conductor con el exterior.
Una capa de blindaje metálico, generalmente cobre o aleación de aluminio entretejido (a veces solo consta de un papel metálico) cuya función es la de mantenerse lo mas apretado posible para eliminar las interferencias, además de que evita de que el eje común se rompa o se tuerza demasiado, ya que si el eje común no se mantiene en buenas condiciones, trae como consecuencia que la señal se va perdiendo, y esto afectaría la calidad de la señal.
Por último, tiene una capa final de recubrimiento, de color negro en el caso del cable coaxial delgado o amarillo en el caso del cable coaxial grueso, este recubrimiento normalmente suele ser de vinilo, xelón ó polietileno uniforme para mantener la calidad de las señales.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Una breve comparación entre el cable coaxial y el cable par trenzado:
El cable coaxial es más inmune a las interferencias o al ruido que el par trenzado.
El cable coaxial es mucho más rígido que el par trenzado, por lo que al realizar las conexiones entre redes la labor será más dificultosa.
La velocidad de transmisión que podemos alcanzar con el cable coaxial llega solo hasta 10Mbps, en cambio con el par trenzado se consiguen 100Mbps.

Algunos tipos de cable coaxial:

Para ver el gráfico seleccione la opción "Descargar"
El RG-75 se usa principalmente
para televisión
Cada cable tiene su uso. Por ejemplo, los cables RG-8, RG-11 y RG-58 se usan para redes de datos con topología de Bus como Ethernet y ArcNet.
Dependiendo del grosor tenemos:

Cable coaxial delgado (Thin coaxial):

El RG-58 es un cable coaxial delgado: a este tipo de cable se le denomina delgado porque es menos grueso que el otro tipo de cable coaxial, debido a esto es menos rígido que el otro tipo, y es más fácil de instalar.

Cable coaxial grueso (Thick coaxial):


Los RG8 y RG11 son cables coaxiales gruesos: estos cables coaxiales permiten una transmisión de datos de mucha distancia sin debilitarse la señal, pero el problema es que, un metro de cable coaxial grueso pesa hasta medio kilogramo, y no puede doblarse fácilmente. Un enlace de coaxial grueso puede ser hasta 3 veces mas largo que un coaxial delgado.
Dependiendo de su banda tenemos:

Banda base:


Existen básicamente dos tipos de cable coaxial. El de Banda Base, que es el normalmente empleado en redes de ordenadores, con una resistencia de 50Ohm, por el que fluyen señales digitales.

Banda ancha:

El cable coaxial de banda ancha normalmente mueve señales analógicas, posibilitando la transmisión de gran cantidad de información por varias frecuencias, y su uso más común es la televisión por cable.
Los factores a tener en cuenta a la hora de elegir un cable coaxial son su ancho de banda, su resistencia o impedancia característica, su capacidad y su velocidad de propagación.
El ancho de banda del cable coaxial está entre los 500Mhz, esto hace que el cable coaxial sea ideal para transmisión de televisión por cable por múltiples canales.


La resistencia o la impedancia característica depende del grosor del conductor central o malla, si varía éste, también varía la impedancia característica.

Fibra
Óptica:

A partir de 1970, cables que transportan luz en lugar de una corriente eléctrica. Estos cables son mucho más ligeros, de menor diámetro y repetidores que los tradicionales cables metálicos. Además, la densidad de información que son capaces de transmitir es también mucho mayor. Una fibra óptica, el emisor está formado por un láser que emite un potente rayo de luz, que varia en función de la señal eléctrica que le llega. El receptor está constituido por un fotodiodo, que transforma la luz incidente de nuevo en señales eléctricas.

En la última década la fibra óptica ha pasado a ser una de las tecnologías más avanzadas que se utilizan como medio de transmisión. Los logros con este material fueron más que satisfactorios, desde lograr una mayor velocidad y disminuir casi en su totalidad ruidos e interferencias, hasta multiplicar las formas de envío en comunicaciones y recepción por vía telefónica.
La fibra óptica está compuesta por filamentos de vidrio de alta pureza muy compactos. El grosor de una fibra es como la de un cabello humano aproximadamente. Fabricadas a alta temperatura con base en silicio, su proceso de elaboración es controlado por medio de computadoras, para permitir que el índice de refracción de su núcleo, que es la guía de la onda luminosa, sea uniforme y evite las desviaciones.
Como características de la fibra podemos destacar que son compactas, ligeras, con bajas pérdidas de señal, amplia capacidad de transmisión y un alto grado de confiabilidad ya que son inmunes a las interferencias electromagnéticas de radio-frecuencia. Las fibras ópticas no conducen señales eléctricas, conducen rayos luminosos, por lo tanto son ideales para incorporarse en cables sin ningún componente conductivo y pueden usarse en condiciones peligrosas de alta tensión
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Las fibras ópticas se caracterizan por una pérdidas de transmisión realmente bajas, una capacidad extremadamente elevada de transporte de señales, dimensiones mucho menores que los sistemas convencionales, instalación de repetidores a lo largo de las líneas (gracias a la disminución de las perdidas debidas a la transmisión), una mayor resistencia frente a las interferencias, etc.
La transmisión de las señales a lo largo de los conductores de fibra óptica se verifica gracias a la reflexión total de la luz en el interior de los conductores óticos. Dichos conductores están constituidos por un ánima de fibras delgadas, hechas de vidrios ópticos altamente transparentes con un índice de reflexión adecuado, rodeada por un manto de varias milésimas de espesor, compuesto por otro vidrio con índice de reflexión inferior al del que forma el ánima. La señal que entra por un extremo de dicho conductor se refleja en las paredes interiores hasta llegar al extremo de salida, siguiendo su camino independientemente del hecho de que la fibra esté o no curvada.
Estos cables son la base de las modernas autopistas de la información, que hacen técnicamente posible una interconectividad a escala planetaria.
Los tipos de fibra óptica son:

Fibra multimodal


En este tipo de fibra viajan varios rayos ópticos reflejándose a diferentes ángulos, los diferentes rayos ópticos recorren diferentes distancias y se desfasan al viajar dentro de la fibra. Por esta razón, la distancia a la que se puede trasmitir está limitada.
Fibra multimodal con índice graduado
En este tipo de fibra óptica el núcleo está hecho de varias capas concéntricas de material óptico con diferentes índices de refracción. En estas fibras el número de rayos ópticos diferentes que viajan es menor y, por lo tanto, sufren menos el severo problema de las multimodales.

Fibra monomodal:


Esta fibra óptica es la de menor diámetro y solamente permite viajar al rayo óptico central. No sufre del efecto de las otras dos pero es más difícil de construir y manipular. Es también más costosa pero permite distancias de transmisión mayores.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En comparación con el sistema convencional de cables de cobre, donde la atenuación de sus señales es de tal magnitud que requieren de repetidores cada dos kilómetros para regenerar la transmisión, en el sistema de fibra óptica se pueden instalar tramos de hasta 70 Km. sin que haya necesidad de recurrir a repetidores, lo que también hace más económico y de fácil mantenimiento este material.
Con un cable de seis fibras se puede transportar la señal de más de cinco mil canales o líneas principales, mientras que se requiere de 10,000 pares de cable de cobre convencional para brindar servicio a ese mismo número de usuarios, con la desventaja que este último medio ocupa un gran espacio en los canales y requiere de grandes volúmenes de material, lo que también eleva los costes.
Originalmente, la fibra óptica fue propuesta como medio de transmisión debido a su enorme ancho de banda; sin embargo, con el tiempo se ha introducido en un amplio rango de aplicaciones además de la telefonía, automatización industrial, computación, sistemas de televisión por cable y transmisión de información de imágenes astronómicas de alta resolución entre otros.
En un sistema de transmisión por fibra óptica existe un transmisor que se encarga de transformar las ondas electromagnéticas en energía óptica o en luminosa. Por ello se le considera el componente activo de este proceso. Cuando la señal luminosa es transmitida por las pequeñas fibras, en otro extremo del circuito se encuentra un tercer componente al que se le denomina detector óptico o receptor, cuya misión consiste en transformar la señal luminosa en energía electromagnética, similar a la señal original. El sistema básico de transmisión se compone en este orden, de señal de entrada, amplificador, fuente de luz, corrector óptico, línea de fibra óptica (primer tramo ), empalme, línea de fibra óptica (segundo tramo), corrector óptico, receptor, amplificador y señal de salida.
Se puede decir que en este proceso de comunicación, la fibra óptica funciona como medio de transportación de la señal luminosa, generado por el transmisor de LED's (diodos emisores de luz) y lasers. Los diodos emisores de luz y los diodos lasers son fuentes adecuadas para la transmisión mediante fibra óptica, debido a que su salida se puede controlar rápidamente por medio de una corriente de polarización. Además su pequeño tamaño, su luminosidad, longitud de onda y el bajo voltaje necesario para manejarlos son características atractivas.

ENLACES INALAMBRICOS.


Servicio que consiste en ofrecer al cliente acceso ilimitado a Internet mediante un enlace inalámbrico por medio de antenas, que le permiten utilizar un ancho de banda desde 64K hasta 2Mbps.
Trabajan por medio de radio frecuencia







Estos cables son la base de las modernas autopistas de la información, que hacen técnicamente posible una interconectividad a escala planetaria.
Los tipos de fibra óptica son:

Fibra multimodal


En este tipo de fibra viajan varios rayos ópticos reflejándose a diferentes ángulos, los diferentes rayos ópticos recorren diferentes distancias y se desfasan al viajar dentro de la fibra. Por esta razón, la distancia a la que se puede trasmitir está limitada.

Fibra multimodal con índice graduado

En este tipo de fibra óptica el núcleo está hecho de varias capas concéntricas de material óptico con diferentes índices de refracción. En estas fibras el número de rayos ópticos diferentes que viajan es menor y, por lo tanto, sufren menos el severo problema de las multimodales.

Fibra monomodal:


Esta fibra óptica es la de menor diámetro y solamente permite viajar al rayo óptico central. No sufre del efecto de las otras dos pero es más difícil de construir y manipular. Es también más costosa pero permite distancias de transmisión mayores.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En comparación con el sistema convencional de cables de cobre, donde la atenuación de sus señales es de tal magnitud que requieren de repetidores cada dos kilómetros para regenerar la transmisión, en el sistema de fibra óptica se pueden instalar tramos de hasta 70 Km. sin que haya necesidad de recurrir a repetidores, lo que también hace más económico y de fácil mantenimiento este material.
Con un cable de seis fibras se puede transportar la señal de más de cinco mil canales o líneas principales, mientras que se requiere de 10,000 pares de cable de cobre convencional para brindar servicio a ese mismo número de usuarios, con la desventaja que este último medio ocupa un gran espacio en los canales y requiere de grandes volúmenes de material, lo que también eleva los costes.
Originalmente, la fibra óptica fue propuesta como medio de transmisión debido a su enorme ancho de banda; sin embargo, con el tiempo se ha introducido en un amplio rango de aplicaciones además de la telefonía, automatización industrial, computación, sistemas de televisión por cable y transmisión de información de imágenes astronómicas de alta resolución entre otros.
En un sistema de transmisión por fibra óptica existe un transmisor que se encarga de transformar las ondas electromagnéticas en energía óptica o en luminosa. Por ello se le considera el componente activo de este proceso. Cuando la señal luminosa es transmitida por las pequeñas fibras, en otro extremo del circuito se encuentra un tercer componente al que se le denomina detector óptico o receptor, cuya misión consiste en transformar la señal luminosa en energía electromagnética, similar a la señal original. El sistema básico de transmisión se compone en este orden, de señal de entrada, amplificador, fuente de luz, corrector óptico, línea de fibra óptica (primer tramo ), empalme, línea de fibra óptica (segundo tramo), corrector óptico, receptor, amplificador y señal de salida.
Se puede decir que en este proceso de comunicación, la fibra óptica funciona como medio de transportación de la señal luminosa, generado por el transmisor de LED's (diodos emisores de luz) y lasers. Los diodos emisores de luz y los diodos lasers son fuentes adecuadas para la transmisión mediante fibra óptica, debido a que su salida se puede controlar rápidamente por medio de una corriente de polarización. Además su pequeño tamaño, su luminosidad, longitud de onda y el bajo voltaje necesario para manejarlos son características atractivas.

ENLACES INALAMBRICOS.

Servicio que consiste en ofrecer al cliente acceso ilimitado a Internet mediante un enlace inalámbrico por medio de antenas, que le permiten utilizar un ancho de banda desde 64K hasta 2Mbps.
Trabajan por medio de radio frecuencia

Aún en el caso de estar conectado a una red, ésta tampoco se libra de éstos dispositivos, ya que en este caso será la propia red la que utilizará el módem para poder conectarse a otras redes o a Internet estando en este caso conectado a nuestro servidor o a un router.
Lo primero que hay que dejar claro es que los módem se utilizan con líneas analógicas, ya que su propio nombre indica su principal función, que es la de modular-demodular la señal digital proveniente de nuestro ordenador y convertirla a una forma de onda que sea asimilable por dicho tipo de líneas.
Es cierto que se suelen oír expresiones como módem ADSL o incluso módem RDSI, aunque esto no es cierto en estos casos, ya que estas líneas de tipo digital no necesitan de ningún tipo de conversión de digital a analógico, y su función en este caso es más parecida a la de una tarjeta de red que a la de un módem. Uno de los primeros parámetros que lo definen es su velocidad. El estándar más habitual y el más moderno está basado en la actual norma V.90 cuya velocidad máxima está en los 56 Kbps (Kilo bites por segundo). Esta norma se caracteriza por un funcionamiento asimétrico, puesto que la mayor velocidad sólo es alcanzable "en bajada", ya que en el envío de datos está limitada a 33,6 Kbps.
Otra consideración importante es que para poder llegar a esta velocidad máxima se deben dar una serie de circunstancias que no siempre están presentes y que dependen totalmente de la compañía telefónica que nos presta sus servicios, pudiendo ser en algunos casos bastante inferiores.
Evidentemente, el módem que se encuentre al otro lado de la línea telefónica, sea nuestro proveedor de Internet o el de nuestra oficina debe ser capaz de trabajar a la misma velocidad y con la misma norma que el nuestro, ya que sino la velocidad que se establecerá será la máxima que aquel soporte.

En éste tipo de dispositivos es muy importante utilizar un puerto serie que implemente una UART del tipo 16550 o alguna de sus variaciones como la 16550AF que nos permitirá un flujo de datos con el ordenador de 115.000 bps. UART más antiguas como las 16540 o peor aún las 8250 son hoy día inaceptables por su baja velocidad. (Consultar nuestra sección de Puertos)
La forma más sencilla de conocer qué UART implementan nuestros puertos serie es mediante el programa MSD que viene con casi todas las versiones de MS-DOS y Windows (si no está en tu disco duro busca en el CD o los disquetes de instalación)
Hay que tener en cuenta que la velocidad de comunicación del módem con el puerto serie debe ser bastante mayor de la que éste es capaz de transmitir a través de la línea telefónica, entre otros motivos por la compresión hardware que es capaz de realizar a los datos que le llegan.

Protocolo propietario de 3Com, es decir, no estándar.
Otra funcionalidad ya considerada como obligatoria en cualquier módem es el soporte de funciones de FAX.

Otros estándares considerados como imprescindibles son los de control de errores y compresión de datos. Los más habituales son: V.42, V.42bis y MNP 2-5. Un aspecto igualmente importante es el de contar con una memoria de tipo flash que nos permita la actualización del firmware al igual que ocurre con las BIOS de las placas base.
Este detalle ha sido extremadamente importante en los módem que utilizaban los distintos estándares de 56K anteriores a la norma V.90, ya que gracias a ello y mediante una simple actualización ha sido posible no quedarse con un modelo desfasado.
Igualmente algunos modelos que funcionaban a 33,6 Kbps han podido ser actualizados y funcionar a 56 Kbps con el mismo método y sin necesidad de actualizar el hardware.
La palabra módem esta formada por las raíces de las palabras modulador o desmodulador. El modulador se encarga de recoger las señales digitales (caracteres binarios) y convertirlas en señales analógicas (una onda modulada) capaces de ser transmitidas por línea telefónica. El desmodulador es el que realiza la operación inversa; es decir, transforma las señales analógicas en señales digitales, capaces de ser interpretadas por la computadora.
La modulación de la señal que emiten los módems puede hacer de tres maneras:
Modulación por amplitud: a cada valor de la señal de entrada 1, 0, se le hace corresponder un valor distinto de la amplitud de la onda portadora.
Modulación por frecuencia: consiste en variar la frecuencia de la portadora en función de la señal de entrada, manteniendo la misma amplitud.
Modulación por fase: variación de la fase de la portadora (normalmente 180°) en función de la señal de entrada.
Además de las funciones explicadas, el módem puede realizar otras de control y transmisión de datos se efectúen correctamente.


Otros estándares considerados como imprescindibles son los de control de errores y compresión de datos. Los más habituales son: V.42, V.42bis y MNP 2-5. Un aspecto igualmente importante es el de contar con una memoria de tipo flash que nos permita la actualización del firmware al igual que ocurre con las BIOS de las placas base.
Este detalle ha sido extremadamente importante en los módem que utilizaban los distintos estándares de 56K anteriores a la norma V.90, ya que gracias a ello y mediante una simple actualización ha sido posible no quedarse con un modelo desfasado.
Igualmente algunos modelos que funcionaban a 33,6 Kbps han podido ser actualizados y funcionar a 56 Kbps con el mismo método y sin necesidad de actualizar el hardware.
La palabra módem esta formada por las raíces de las palabras modulador o desmodulador. El modulador se encarga de recoger las señales digitales (caracteres binarios) y convertirlas en señales analógicas (una onda modulada) capaces de ser transmitidas por línea telefónica. El desmodulador es el que realiza la operación inversa; es decir, transforma las señales analógicas en señales digitales, capaces de ser interpretadas por la computadora.
La modulación de la señal que emiten los módems puede hacer de tres maneras:
Modulación por amplitud: a cada valor de la señal de entrada 1, 0, se le hace corresponder un valor distinto de la amplitud de la onda portadora.
Modulación por frecuencia: consiste en variar la frecuencia de la portadora en función de la señal de entrada, manteniendo la misma amplitud.
Modulación por fase: variación de la fase de la portadora (normalmente 180°) en función de la señal de entrada.
Además de las funciones explicadas, el módem puede realizar otras de control y transmisión de datos se efectúen correctamente.




Tipos de módems




El módem serie externo





Desde el punto de vista de su aspecto físico, existen tres tipos: internos, externos y de tarjeta PCMCIA. Los módems internos son placas de circuito impreso que se instalan dentro del ordenador. Para instalar un módem interno hay que abrir el ordenador y acceder a su interior. Los módems externos son pequeñas cajas que se conectan al puerto serie del ordenador, a la red telefónica fija, y a la red eléctrica, a través de un alimentador. Los módems de tarjeta se insertan en una ranura PCMCIA de un ordenador portátil, o en una unidad equivalente para un ordenador de sobremesa. Estos dispositivos toman la alimentación del interior de ordenador, por lo que no requieren un alimentador externo.
Este es el módem "clásico" por antonomasia y posiblemente aún el más utilizado, a pesar de que la competencia de los modelos basados en USB es cada vez más fuerte. Por tanto, los mejores modelos se suelen encontrar aún en este formato y es ya habitual encontrarse en ellos funciones de contestador automático, fax y centralita telefónica, actuando incluso en el caso de que nuestro ordenador esté apagado, gracias a la memoria que incorporan. Algunos modelos también integran un altavoz y un micrófono, por lo que se convierten en plenamente autónomos...

En éste tipo de dispositivos es muy importante utilizar un puerto serie que implemente una UART del tipo 16550 o alguna de sus variaciones como la 16550AF que nos permitirá un flujo de datos con el ordenador de 115.000 bps. UART más antiguas como las 16540 o peor aún las 8250 son hoy día inaceptables por su baja velocidad. (Consultar nuestra sección de Puertos)
La forma más sencilla de conocer qué UART implementan nuestros puertos serie es mediante el programa MSD que viene con casi todas las versiones de MS-DOS y Windows (si no está en tu disco duro busca en el CD o los disquetes de instalación)
Hay que tener en cuenta que la velocidad de comunicación del módem con el puerto serie debe ser bastante mayor de la que éste es capaz de transmitir a través de la línea telefónica, entre otros motivos por la compresión hardware que es capaz de realizar a los datos que le llegan.


En este tipo de configuración normalmente encontramos modelos de gama baja y prestaciones recortadas, como ocurre en el caso de los "Winmodem", también llamados "softmodem" o HSP. Sin embargo esto no es más que una estrategia de los fabricantes debido a que este tipo de módem suelen resultar más económicos que los externos.
Aquí igualmente podremos hacer una segunda distinción dependiendo del tipo de bus al que vayan conectados. Encontraremos modelos para ranura ISA, para PCI o para las más novedosas AMR. Debido a que el primero está tendiendo a desaparecer, cada vez es más difícil encontrar modelos para él, siendo lo habitual los dispositivos PCI, que además tienen la ventaja del Plug and Play (PnP) que siempre es una ayuda en el momento de su instalación.


Los modelos basados en AMR sólo podremos utilizarlos en las placas más modernas como las que utilizan el chipset i810, y están orientados al mercado de gama baja, debido a que la mayor parte de la funcionalidad del dispositivo está ya implementada en la propia placa base y al igual que ocurre en el caso de los Winmódem su funcionamiento está más basado en el software que en el hardware, lo que repercute en un menor precio de coste pero por el contrario su utilización consume ciclos de CPU y su portabilidad está limitada ya que no todos los sistemas operativos disponen del soporte software adecuado para hacerlos funcionar.
Ventajas:
No necesitan una fuente de alimentación externa y no ocupan lugar en nuestro escritorio, lo que normalmente es de agradecer...
No ocupan ninguno de los puertos serie existentes en nuestra máquina.
En máquinas muy antiguas no hay que preocuparse de posibles problemas en la velocidad de transferencia por causa de un puerto serie lento debido a la utilización de algún chip UART anticuado. (Consulte nuestra sección de Puertos)

El módem USB

Este tipo de configuración es la reciente dentro del mundo de los módem. La principal ventaja la tenemos en el propio método de conexión, por lo que os remitimos a nuestra sección dedicada a este puerto.

Respecto del modelo externo para puerto serie tiene la ventaja de que no hay que preocuparse por la velocidad de conexión de éste con el ordenador, pues en este caso el caudal proporcionado es más que suficiente. Tampoco es problema el contar con pocos puertos USB, pues siempre podremos adquirir un hub para interconectar más dispositivos. De todas formas para evitar este gasto sería interesante que el propio módem incorporara como mínimo dos conectores, aunque no suele ser lo habitual.
Ventajas:
No ocupan ninguna ranura de expansión, lo que es adecuado para ordenadores con nulas o pocas posibilidades de ampliación, incluso para ordenadores portátiles, aunque hay que tener en cuenta que su consumo normalmente será mayor que el de un dispositivo de tipo PC-Card.
Sólo utilizan los recursos del propio USB al que están conectados.
Suelen dispone de indicadores luminosos que nos informan del estado de la conexión y del propio aparato.
Algunos modelos disponen de un interruptor para apagarlo cuando no lo utilizamos. En todo caso, al igual que ocurre con cualquier otro dispositivo USB, siempre se puede desconectar (y por supuesto conectar) "en caliente", es decir, con el ordenador en marcha.
Una ventaja sobre los módem externos serie es que no precisan de ninguna alimentación externa.

El módem en formato PC Card

Este tipo de módem es el adecuado para los ordenadores portátiles, pues tiene las mismas prestaciones que el resto de tipos analizados, pero con el tamaño de una tarjeta de crédito.
Ventajas:
No necesita fuente de alimentación externa y su consumo eléctrico es reducido, aunque no es conveniente abusar de él cuando lo utilizamos en un ordenador portátil usando las baterías.

sábado, 13 de febrero de 2010

SERVIDORES

En informática, un servidor es una computadora que, formando parte de una red, provee servicios a otras computadoras denominadas clientes.[1]
También se suele denominar con la palabra servidor a:
Una aplicación informática o programa que realiza algunas tareas en beneficio de otras aplicaciones llamadas clientes. Algunos servicios habituales son los servicios de archivos, que permiten a los usuarios almacenar y acceder a los archivos de una computadora y los servicios de aplicaciones, que realizan tareas en beneficio directo del usuario final. Este es el significado original del término. Es posible que un ordenador cumpla simultáneamente las funciones de cliente y de servidor.
Una computadora en la que se ejecuta un programa que realiza alguna tarea en beneficio de otras aplicaciones llamadas clientes, tanto si se trata de un ordenador central (mainframe), un miniordenador, un ordenador personal, una PDA o un sistema integrado; sin embargo, hay computadoras destinadas únicamente a proveer los servicios de estos programas: estos son los servidores por antonomasia.
Un servidor no es necesariamente una máquina de última generación de grandes proporciones, no es necesariamente un superordenador; un servidor puede ser desde una computadora vieja, hasta una máquina sumamente potente (ej.: servidores web, bases de datos grandes, etc. Procesadores especiales y hasta varios gigabytes de memoria). Todo esto depende del uso que se le dé al servidor. Si usted lo desea, puede convertir al equipo desde el cual usted está leyendo esto en un servidor instalando un programa que trabaje por la red y a la que los usuarios de su red ingresen a través de un programa de servidor web como Apache.
Por lo cual podemos llegar a la conclusión de que un servidor también puede ser un proceso que entrega información o sirve a otro proceso. El modelo Cliente-servidor no necesariamente implica tener dos ordenadores, ya que un proceso cliente puede solicitar algo como una impresión a un proceso servidor en un mismo ordenador.
En las siguientes listas, hay algunos tipos comunes de servidores y de su propósito.
Servidor de archivo: es el que almacena varios tipos de archivos y los distribuye a otros clientes en la red.
Servidor de impresiones: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con email para los clientes de la red.
Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax.
Servidor de la telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o el Internet, p. ej., la entrada excesiva del IP de la voz (VoIP), etc.
Servidor proxy: realiza un cierto tipo de funciones a nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente), también sirve seguridad, esto es, tiene un Firewall. Permite administrar el acceso a internet en una Red de computadoras permitiendo o negando el acceso a diferentes sitios Web.
Servidor del acceso remoto(RAS): controla las líneas de módem de los monitores u otros canales de comunicación de la red para que las peticiones conecten con la red de una posición remota, responden llamadas telefónicas entrantes o reconocen la petición de la red y realizan los chequeos necesarios de seguridad y otros procedimientos necesarios para registrar a un usuario en la red.
Servidor de uso: realiza la parte lógica de la informática o del negocio de un uso del cliente, aceptando las instrucciones para que se realicen las operaciones de un sitio de trabajo y sirviendo los resultados a su vez al sitio de trabajo, mientras que el sitio de trabajo realiza el interfaz operador o la porción del GUI del proceso (es decir, la lógica de la presentación) que se requiere para trabajar correctamente.
Servidor web: almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material Web compuesto por datos (conocidos colectivamente como contenido), y distribuye este contenido a clientes que la piden en la red.
Servidor de Base de Datos: (database server) provee servicios de base de datos a otros programas u otras computadoras, como es definido por el modelo cliente-servidor. También puede hacer referencia a aquellas computadoras (servidores) dedicadas a ejecutar esos programas, prestando el servicio.
Servidor de reserva: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento (cinta, etc.) disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. Esta técnica también es denominada clustering.
Impresoras: muchas impresoras son capaces de actuar como parte de una red de ordenadores sin ningún otro dispositivo, tal como un "print server", a actuar como intermediario entre la impresora y el dispositivo que está solicitando un trabajo de impresión de ser terminado.
Terminal tonto: muchas redes utilizan este tipo de equipo en lugar de puestos de trabajo para la entrada de datos. En estos sólo se exhiben datos o se introducen. Este tipo de terminales, trabajan contra un servidor, que es quien realmente procesa los datos y envía pantallas de datos a los terminales.
Otros dispositivos: hay muchos otros tipos de dispositivos que se puedan utilizar para construir una red, muchos de los cuales requieren una comprensión de conceptos más avanzados del establecimiento de una red de la computadora antes de que puedan ser entendidos fácilmente (e.g., los cubos, las rebajadoras, los puentes, los interruptores, los cortafuegos del hardware, etc.). En las redes caseras y móviles, que conecta la electrónica de consumidor los dispositivos tales como consolas vídeo del juego está llegando a ser cada vez más comunes.